Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Acm Transactions on Computing Education ; 23(1), 2023.
Article in English | Web of Science | ID: covidwho-2309861

ABSTRACT

Research Problem. Computer science (CS) education researchers conducting studies that target high school students have likely seen their studies impacted by COVID-19. Interpreting research findings impacted by COVID-19 presents unique challenges that will require a deeper understanding as to how the pandemic has affected underserved and underrepresented students studying or unable to study computing. Research Question. Our research question for this study was: In what ways has the high school computer science educational ecosystem for students been impacted by COVID-19, particularly when comparing schools based on relative socioeconomic status of a majority of students? Methodology. We used an exploratory sequential mixed methods study to understand the types of impacts high school CS educators have seen in their practice over the past year using the CAPE theoretical dissaggregation framework to measure schools' Capacity to offer CS, student Access to CS education, student Participation in CS, and Experiences of students taking CS. Data Collection Procedure. We developed an instrument to collect qualitative data from open-ended questions, then collected data from CS high school educators (n = 21) and coded them across CAPE. We used the codes to create a quantitative instrument. We collected data from a wider set of CS high school educators (n = 185), analyzed the data, and considered how these findings shape research conducted over the last year. Findings. Overall, practitioner perspectives revealed that capacity for CS Funding, Policy & Curriculum in both types of schools grew during the pandemic, while the capacity to offer physical and human resources decreased. While access to extracurricular activities decreased, there was still a significant increase in the number of CS courses offered. Fewer girls took CS courses and attendance decreased. Student learning and engagement in CS courses were significantly impacted, while other noncognitive factors like interest in CS and relevance of technology saw increases. Practitioner perspectives also indicated that schools serving students from lower-income families had (1) a greater decrease in the number of students who received information about CS/CTE pathways;(2) a greater decrease in the number of girls enrolled in CS classes;(3) a greater decrease in the number of students receiving college credit for dual-credit CS courses;(4) a greater decrease in student attendance;and (5) a greater decrease in the number of students interested in taking additional CS courses. On the flip-side, schools serving students from higher income families had significantly higher increases in the number of students interested in taking additional CS courses.

2.
ACM Transactions on Computing Education ; 23(1), 2022.
Article in English | Scopus | ID: covidwho-2271579

ABSTRACT

Research Problem. Computer science (CS) education researchers conducting studies that target high school students have likely seen their studies impacted by COVID-19. Interpreting research findings impacted by COVID-19 presents unique challenges that will require a deeper understanding as to how the pandemic has affected underserved and underrepresented students studying or unable to study computing.Research Question. Our research question for this study was: In what ways has the high school computer science educational ecosystem for students been impacted by COVID-19, particularly when comparing schools based on relative socioeconomic status of a majority of students?Methodology. We used an exploratory sequential mixed methods study to understand the types of impacts high school CS educators have seen in their practice over the past year using the CAPE theoretical dissaggregation framework to measure schools' Capacity to offer CS, student Access to CS education, student Participation in CS, and Experiences of students taking CS.Data Collection Procedure. We developed an instrument to collect qualitative data from open-ended questions, then collected data from CS high school educators (n = 21) and coded them across CAPE. We used the codes to create a quantitative instrument. We collected data from a wider set of CS high school educators (n = 185), analyzed the data, and considered how these findings shape research conducted over the last year.Findings. Overall, practitioner perspectives revealed that capacity for CS Funding, Policy & Curriculum in both types of schools grew during the pandemic, while the capacity to offer physical and human resources decreased. While access to extracurricular activities decreased, there was still a significant increase in the number of CS courses offered. Fewer girls took CS courses and attendance decreased. Student learning and engagement in CS courses were significantly impacted, while other noncognitive factors like interest in CS and relevance of technology saw increases.Practitioner perspectives also indicated that schools serving students from lower-income families had (1) a greater decrease in the number of students who received information about CS/CTE pathways;(2) a greater decrease in the number of girls enrolled in CS classes;(3) a greater decrease in the number of students receiving college credit for dual-credit CS courses;(4) a greater decrease in student attendance;and (5) a greater decrease in the number of students interested in taking additional CS courses. On the flip-side, schools serving students from higher income families had significantly higher increases in the number of students interested in taking additional CS courses. © 2022 Association for Computing Machinery.

3.
129th ASEE Annual Conference and Exposition: Excellence Through Diversity, ASEE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2046165

ABSTRACT

In early 2020, a cohort of 30 high schools engaged in a year-long intervention designed to increase their ability to offer Computer Science (CS) and Cybersecurity education to their students. After we performed an evaluation on the intervention's impacts, we turned our attention to whether or not the outcomes were influenced by engagement of the schools in the cohort. In this research paper, we focus on the guiding research question: How do schools' engagement in an intervention designed to build equitable CS and Cybersecurity education capacity impact schools' course offerings and students' participation in these courses? To measure equitable impact, we evaluated changes to actual CS and Cybersecurity course offerings and enrollment at the schools. We focused on the differences in participation across student gender and race/ethnicity as well as participation levels at the different schools across three years prior to the intervention and one year after the intervention. Findings indicate that, despite the disruption to schools from the COVID-19 pandemic, schools engaged in the program had very significant increases in AP CSP, AP CS A, and Cybersecurity course offerings and enrollment, particularly at schools that serve students from low-income families. © American Society for Engineering Education, 2022.

4.
129th ASEE Annual Conference and Exposition: Excellence Through Diversity, ASEE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2046164

ABSTRACT

Practitioners delivering computer science (CS) education during the COVID-19 pandemic have faced numerous challenges, including the move to online learning. Understanding the impact on students, particularly students from historically marginalized groups within the United States, requires deeper exploration. Our research question for this study was: In what ways has the high school computer science educational ecosystem for students been impacted by COVID-19, particularly when comparing schools that have student populations with a majority of historically underrepresented students to those that do not? To answer this question, we used the CAPE theoretical framework to measure schools' Capacity to offer CS, student Access to CS education, student Participation in CS, and Experiences of students taking CS [1]. We developed a quantitative instrument based on the results of a qualitative inquiry, then used the instrument to collect data from CS high school practitioners located in the United States (n=185) and performed a comparative analysis of the results. We found that the numbers of students participating in AP CS A courses, CS related as well as non-CS related extracurricular activities, and multiple extracurricular activities increased. However, schools primarily serving historically underrepresented students had significantly fewer students taking additional CS courses and fewer students participating in CS related extracurricular activities. Student learning in CS courses decreased significantly;however, engagement did not suffer. Other noncognitive factors, like students' understanding of the relevance of technology and confidence using technology, improved overall;however, student interested in taking additional CS courses was significantly lower in schools primarily serving historically underrepresented students. Last, the numbers of students taking the AP CS A and AP CS Principles exams declined overall. © American Society for Engineering Education, 2022.

SELECTION OF CITATIONS
SEARCH DETAIL